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ABSTRACT

  This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission
system.  The procedure developed in this study can be applied as a part of either an onboard machine
health-monitoring system or a health diagnostic system used during regular maintenance. As the
developed methodology is based on analysis of gearbox vibration under normal operating conditions,
no shutdown or special modification of operating parameters is required during the diagnostic process.
  The process of quantifying the wear or damage of gear teeth requires a set of measured vibration
data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the
profile of a time-varying mesh stiffness parameter for which the model output approximates the
measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage.
  The procedure was applied to a data set generated artificially and to another obtained
experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as
part of an overall health-monitoring system.

Keywords: Health monitoring; Gears; Maintenance; Wigner-Ville distribution; Time-frequency
analysis; Optimal tracking

1.  INTRODUCTION

  In the last two decades, with demands for higher operating speeds and greater load capacity,
premature failures in high-performance turbomachinery have often resulted in enormous financial
losses and, at times, catastrophic consequences. In aeronautical applications, where both weight and
efficiency are pushed to their design limits, the prevention and management of premature equipment
failures is a vital part of the maintenance program. Current onboard condition-monitoring systems for
gas turbine engines often fail to provide sufficient time between warning and failure for safety
procedures to be implemented. On the other hand, inaccurate interpretation of operating conditions
may result in false alarms and unnecessary repairs and downtime. The early detection of incipient
failure in a mechanical system is of great practical importance as it permits scheduled inspections
without costly shutdowns and indicates the urgency and locations for repair before a system incurs
catastrophic failure.
  Some success has been achieved in identifying damage in a gear transmission system by using a
joint time-frequency analysis known as the Wigner-Ville distribution (WVD) technique (Boashash and
Black, 1987; Choy et al., 1994a,b; Claasen and Mecklenbrauker, 1980). The approach is to use
statistical pattern recognition to match the WVD signature patterns of damaged gears with standard
patterns stored in a data base. Although the WVD technique is useful for determining the type and
location of the damage, it is not much help in quantifying the level of damage.  Damage
quantification would logically be the next step in failure prediction; however, no explicit attempts at
damage quantification have previously appeared in the literature.
  This paper presents a new technique for processing vibration data to quantify the level of damage in
a gear transmission system. The technique consists of a nonlinear numerical optimization in the form
of an “optimal tracking” problem (Sage, 1968; Lewis, 1986).  The optimization uses a dynamic model
of the gear mesh and forms an estimate of the time-varying mesh stiffness that best corresponds to the
given set of vibration data. The utility of the technique relies on the relationship between the wear or
damage of a gear tooth and the change in stiffness of the mesh during a given tooth pass cycle. An
analysis of this relationship demonstrates that the perturbation of the stiffness function from the
nominal profile can be used to quantify the level of damage.
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  The optimal tracking technique for estimating the perturbation of the mesh stiffness was tested in
two settings.  First, it was tested on a set of fictitious data generated by computer simulation of a one-
degree-of-freedom mechanical system with time-varying stiffness. The solution of the optimal tracking
problem matched very closely the actual stiffness profile used in the model generating the data. Then,
the technique was tested on a set of experimental data from a gear test rig, but still assuming the one-
degree-of-freedom model. Despite the simplicity of the model the stiffness profile obtained was shown
to be useful in correlating to the level of damage of the gear transmission system.
  The paper is organized as follows: Section 2 presents the system model and formulates the optimal
tracking problem.  Section 3 outlines the numerical solution procedure for the nonlinear optimization.
Section 4 presents and interprets the results of the optimization and discusses the next steps to be
taken in developing a comprehensive failure-prediction procedure.

2.  OPTIMAL TRACKING PROBLEM

2.1 SYSTEM MODEL

  The system considered in this study consisted of a small pinion in mesh with a larger gear. A simple
model of this system has the two gear masses connected by a spring and a damper. The larger gear is
much heavier than the pinion; hence, it is assumed to be rigid, so that all relative motion between the
two is attributed to the motion of the pinion. Then, the equation of motion of the pinion takes the form

mx cx k t x˙̇ ˙ ( ) , ( )+ + = 0 1

where m is the mass of the pinion and k(t) and c are the stiffness and damping of the mesh. The mesh
stiffness is not constant but is nominally a periodic function of the gear angle, with each period
corresponding to one tooth pass. The high points on the periodic stiffness function correspond to gear
angles where two pairs of gear teeth are in contact, and the low points correspond to angles where
only one pair is in contact.
  It has been found in experiments on gearbox vibrations (Choy et al., 1994b, 1995) that the gear mesh
stiffness changes with the wear, pitting, or fracture of the gear teeth. Such changes in the gear mesh
stiffness inevitably lead to changes in the vibration signatures of the mechanical system. The
objective of the optimal tracking procedure developed in this study is to reconstruct the true stiffness
profile for a damaged gear tooth from the measured vibration. That is, the objective is to determine
the function k(t) that would result in the measured vibration according to the system model (1).
  The true stiffness profile can be expressed as the sum of a constant (time averaged) component, a
nominal periodic component, and a perturbation resulting from gear wear or damage.  Accordingly, the
system model (1) is written as

mx cx k k t k t x˙̇ ˙ ( ) ( ) , ( )+ + - -[ ] =ave periodic perturb 0 2

or

˙̇ ˙ ( ) , ( )x
c

m
x x u t x+ + =W 2 3

where W2 = kave/m and u(t) represents the total time-varying component of the stiffness divided by

the pinion mass.  By defining the variables

x x x x1 2 4= =˙, , ( )

the system model can be written in the state-variable form
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with the given initial conditions

x t x x t x1 0 0 2 0 0 6( ) ˙ , ( ) . ( )= =

2.2 OPTIMIZATION PROBLEM

  Suppose that a data set corresponding to the vibration of the pinion is collected over the interval

[t0,tf].  Let the function describing the data set be denoted as ˜ ( )x t2 , since it corresponds to the

modeled variable

x2 (t). The objective is to determine a reasonable time-varying stiffness component u(t) for which the

model output x2 (t) approximates the measured data ˜ ( )x t2 .

  A diagram depicting the functional objective is shown in Fig. 1(a). In the figure u(t) is depicted as
an input to be chosen so that the error e(t) will be small for all time. Note that this problem has the
form of a tracking problem, where the control input of a system is designed so that the system output
follows a prescribed reference function. Such a problem may be approached by using the standard
techniques of optimal control theory (Sage, 1968; Lewis, 1986). In particular, the “design” of a
suitable function u(t) may be achieved by minimizing the quadratic cost functional

J x t x t x t x t u t dtf f f

t

t f

= -[ ] + -[ ] +{ }Ú1

2

1

2
72 2

2

1 2 2
2

2
2

0

b b b( ) ˜ ( ) ( ) ˜ ( ) ( ) , ( )

where b1, b2, and bf  are cost-function weighting coefficients. This form of the cost functional

penalizes the energy in the error between the modeled output and the measured data.  It also
penalizes the use of too large a stiffness perturbation function in order to avoid singularity in the
solution.
  In the optimal tracking problem the system dynamic equations (5) are treated as equality constraints
imposed in the optimization of the cost (7).  As such, they are appended to the cost function by using

time-varying Lagrange multipliers l1(t) and l2(t). These Lagrange multipliers are themselves

governed by differential equations called the costate equations.  The costate equations together with
the state equations of the system model form a two-point boundary value problem (TPBVP) (Sage,
1968; Lewis, 1986). The TPBVP equations are

˙ ( )

( ) ( )

˙

x
c

m
x x u t x

x x

1 1
2

2 2

2 1

8

= - - +

=

W

State equations

                                                         ˙

( ) ( )

                                                     ˙ ( ) ( ) ˜ ( )

l l l

l W l l b

1 2 1

2
2

1 1 1 2 2

9

= - +

= - - -[ ]

c

m

u t x t x t

Costate equations



4

( )                                   ( ) ( )Stationarity condition 0 101 2 2= +l bx u t

( )                                   ( ) ˙ , ( ) ( )Endpoint conditions x t x x t x1 0 0 2 0 0 11= =

l l b1 2 2 20 12( ) , ( ) ( ) ˜ ( ) . ( )t t x t x tf f f f f= = -[ ]
The TPBVP (8-12) represents a set of necessary conditions for u(t) to be the solution of the optimal

tracking problem. The TPBVP consists of a set of four coupled differential equations (8-9), together

with an algebraic relation (10), and some endpoint conditions (11-12) at both t0 and tf . Notice that the

TPBVP is nonlinear:  the unknown function u(t) multiplies other independent variables in the
differential equations.

3.  NUMERICAL SOLUTION PROCEDURE

  The nonlinear TPBVP (8–12) is solved by an iterative procedure. A complete and general derivation
of the procedure is given in Sage (1968) and Dyer and McReynolds (1970). Some of the salient points
are outlined below for convenience.

3.1 SUCCESSIVE SWEEP METHOD

  Solving the nonlinear TPBVP requires an iterative method. Although several approaches are
possible, a common and useful one is to begin with an initial guess u0(t) and use it to integrate the
nonlinear state equations (8) forward in time starting from the initial conditions (11) to determine the
nominal state functions x t1

0( )  and x t2
0( ) . Then, starting from the final conditions (12), integrate the

nonlinear costate equations backward in time to determine the nominal costate functions l1
0( )t  and

l2
0( )t . The nominal functions u0(t), x t1

0( ) , x t2
0( ) , l1

0( )t , and l2
0( )t  then satisfy all the TPBVP

equations except the stationarity condition (10).
  The nominal state, costate, and input functions must be iteratively updated, so that they will
eventually satisfy all the nonlinear TPBVP equations, including the stationarity condition. Each
update is accomplished by solving a linearized version of the TPBVP. A standard method for doing
this is known as the sweep method, whereby a linear relationship between the state and costate
functions is assumed. Then, the linear TPBVP degenerates into a set of ordinary differential equations
with endpoint conditions at the final time only. These are solved by a straightforward numerical
integration. In the case of the optimal tracker these ordinary differential equations take the form of the
coupled Riccati equations
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p t p t p tf f f f11 12 220 14( ) ( ) , ( ) , ( )= = = b

together with the auxiliary linear equations
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Note that the x and l variables in the differential equations (13) and (15) represent the given nominal

functions. (The zero superscripts have been omitted for convenience.) They are simply treated as
time-varying coefficients in the numerical integration of the differential equations. The solutions of
equations (13) and (15) are then used to compute the corrections to the nominal state, costate, and
input functions.  This computation requires yet another numerical integration, this time of the
linearized state equations
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Finally, the update of the nominal control is computed as

D D D Du x u t x x p x p x h= +[ ] - + + +( )[ ]e
b
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where e is the step size, and the new nominal control is given by

u t u t u ti i i+ = +1 20( ) ( ) ( ). ( )D

(The superscripts i and i+1 denoting the iteration number have been reinserted in equation (20).) The
procedure is repeated until the nominal functions converge to a solution.

The real scalar e Œ [0,1] in equations (15), (17), and (19) is used as a “step size” parameter. Using

a smaller value of e tends to decrease the magnitudes of the corrections, thereby improving the

stability of the iterative procedure but slowing the convergence to the solution. Using a larger value of
e has the opposite effects.

3.2  NUMERICAL DETAILS

  The choices of the cost-function weighting coefficients b1, b2, and bf are important for effective

numerical optimization. The parameter b1 defines the penalty on the difference between the

calculated and reference vibration signals. Since the goal is to minimize the difference between the
calculated and tracked vibration signals, a large weighting coefficient b1 should be chosen. The

parameter b2 defines the penalty on the function u(t). Generically speaking, b2 should impose a lighter

penalty on u(t) than b1 imposes on the tracking error. Note also that the choice of units has an effect

on the appropriate relative sizes of b1 and b2.  In the examples studied the numerical values of u(t)

are considerably larger in magnitude than those of a reasonable vibration-signal error; therefore, even
if equal weighting between error and control were desired, b2 should be chosen to be considerably

smaller than b1. An inappropriately large choice of the parameter b
2
 would make the cost function

almost unchanged from one iteration to the next. Thus, a small constant value was chosen for the
parameter b2. The parameter b f defines the penalty for the error at the final time.  If b f is too small, a

large vibration error at the final time will result.
  By following these general guidelines the optimization algorithm described in the previous section
was realized in a computer program. The equations were integrated with a seventh-order Runge-Kutta-
Fehlberg method.  A summary of the programming steps is given below (fig(b)):

  0.  Set i = 0 and take the initial guess u0(t) for the function u(t) to be zero.

1. Using the function ui(t) from the previous step, integrate the state equations (8) forward in time.

Calculate the resulting cost function Ji.
2. Integrate the costate equations (9) backward in time.
3. Use the computed state and costate variables as time-varying coefficients in the integration of the

Riccati equations (13) along with the auxiliary equations (15) backward in time.
4. Integrate the linearized state equations (17) forward in time.  Using the linearized stationarity

condition (19), calculate the correction Dui(t) to the nominal function ui(t) and hence the

updated function ui+1(t).  Also, calculate the new cost function Ji+1.
  5. Make decisions about the continuation of the optimization procedure and the choice of the

parameters:
a. If the difference between the calculated and tracked vibration signals is small, the optimization     

         procedure is finished.

b. If the difference Ji+1 – Ji < 0 is large enough, repeat from step 1.

c. If  the difference Ji+1 – Ji < 0 is too small, increase the weighting b1 and repeat from step 1.

      d. If Ji+1 > Ji, repeat from step 1 using a smaller value of the step size e. If this is not successful,

increase the error weighting b1 and repeat from step 1.



7

  Some comments should be made on step 5 of the numerical procedure. It was observed that for given
values of weighting coefficients and the step-size parameter the optimization procedure converges to
some value of the cost function. In this case the difference between the values of the cost functions

Ji+1 – Ji becomes negligible after some iterations. This means that the cost associated with the
control u(t) is becoming dominant. Therefore, it makes sense to start a new iteration with an increased
weight b1 (i.e., imposing a higher penalty on the vibration error).

4. DISCUSSION OF RESULTS

  To demonstrate the optimal tracking procedure described above, two numerical cases were used in
this study. The first case was a numerical experiment in which the tracker was applied to a set of
vibration signals generated numerically, assuming a given gear mesh stiffness profile. The mesh
stiffness profile evaluated by the optimal tracker was compared with the original stiffness used in
generating the vibration signal. Figure 2(a) shows the comparison between the vibration signal
generated by a sinusoidal stiffness and that simulated by the optimal tracker. As shown in the figure
the two vibration signals were very similar; the small difference between the two signals is given in
Fig. 2(b). Figure 3(a) depicts the original gear mesh stiffness used and the stiffness evaluated by using
the optimal tracker; the difference between the two stiffnesses is given in Fig. 3(b). The excellent
agreement between the two stiffnesses in this numerical experiment has confirmed the applicability of
the optimal tracking procedure in evaluating system stiffness changes from system vibration signals.
However, this close resemblance between the generated and simulated signals was partly due to the
original time signals being smooth, continuous, and harmonic without any substantial change in
magnitude and phase over the gear revolution. To demonstrate the generality and limitation of the
developed procedure, a set of experimental data taken from a test rig was used in the next case.
  The second case was based on the experimental data obtained from the spiral bevel gear test rig
shown in Fig. 4. The primary purpose of this rig is to study the effects of gear tooth design, gear
materials, and lubrication types on the fatigue strength of aircraft-quality gears (Zakrajsek et al.,
1994). Because spiral bevel gears are used extensively in helicopter transmissions to transfer power
between nonparallel intersecting shafts, using this fatigue rig for diagnostic studies is extremely
practical. Vibration data from an accelerometer mounted on the pinion shaft bearing housing were
captured by using a personal computer with an analog-to-digital conversion board and an anti-aliasing
filter. The 12-tooth test pinion and the 36-tooth gear have the following characteristics: 0.5141 in
pitch, 35° spiral angle, 1-in. face width, 90° shaft angle, and 22.5° pressure angle. The pinion transmits
720 hp at a nominal speed of 14 400 rpm. The test rig was started and stopped several times for gear
damage inspection. The test was ended at 17.72 operational hours when a broken portion of a tooth
was found visually during one of the shutdowns.
  Figure 5(a) depicts the gear tooth after 6.5 hr of operation. Note that there is heavy surface pitting on
one gear tooth with minor pitting on the next tooth. Figure 5(b) shows the time domain averaging, the
frequency spectrum, and the joint time-frequency analysis using the Wigner-Ville distribution (WVD)
(Boashash and Black, 1987; Choy et al., 1994a,b, 1995; Claasen and Mechlenbrauker, 1980) of the
accelerometer signal at 6.5 hr (Choy et al., 1994a). Note that in Fig. 5(b) the time signal indicates a
large vibratory signal during the engagement of the sixth and seventh teeth (damaged teeth), but the
frequency spectrum, because of its averaging characteristics, shows very little change from the
original signal (Choy et al., 1994a). The WVD begins to show a pattern of shifting of the major
frequency component (at a mesh frequency of 2880 Hz) around the meshing of the sixth and seventh
teeth. The WVD pattern in this case is very similar to those resulting from a short-term amplitude and
phase change of a vibration signal (Choy
et al., 1994a). Although it has been established by the authors in some previous publications (Choy
et al., 1994a,b, 1995) that such damage in the gear can be identified by the WVD pattern recognition
process, the level of the damage has not been addressed. A recent study by the authors has shown that
wear and surface pitting of the gear tooth usually will result in a phase shift in the stiffness profile,
without any significant change in the stiffness magnitude. Figure 6 shows the stiffness change in a
gear mesh evaluated (Boyd and Pike, 1985) from gear tooth surface profile variations. Note in Fig.
6(b) that increasing surface profile variation increases the phase shift of the gear stiffness without
changing the magnitude of the stiffness.
  Incorporating this constant gear mesh stiffness as an additional constraint, the optimal tracking
procedure was applied to the experimental vibration signal (obtained from the bevel gear test rig at
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6.5 hr as shown in Fig. 5) to evaluate the corresponding gear mesh stiffness. To better evaluate the
gear mesh stiffness, the time signal was filtered at a mesh frequency of 2880 Hz. Figure 7(a) shows
the comparison between the unfiltered experimental signal and the optimal tracker simulation, and
Fig. 7(b) shows the comparison between the filtered experimental signal and the tracker-simulated
signal. Note that because of the substantial change of magnitude and phase of the time signal during
the data acquisition period (one revolution of the gear), the accuracy in the simulated vibration is not
as good as that in the numerical experiment (Fig. 2(a)). Figure 8 depicts the gear mesh stiffness
evaluated by using the optimal tracker.  Note that in the evaluated stiffness considerable phase shifts
at several gear teeth resulted in the large variation in magnitude and phase of the vibration signal. At
the location where pitting occurred (teeth 6 and 7) the phase shift of the stiffness was more
pronounced. By using the results from the evaluated mesh stiffness and the correlation of stiffness
change with gear wear shown in Fig. 6(b), the gear damage can be estimated.

5. CONCLUSIONS

  This paper presents a unified approach to identifying and quantifying damage in a gear transmission
system. The conclusions from this study are as follows:

  1. The application of the joint time-frequency technique called the Wigner-Ville distribution provides
the ability to identify the types and locations of the gear damage.
  2. The optimal tracker developed in this paper provides a very reasonable estimate of the stiffness
change due to damage, which can be related to the level of gear damage.
  3. For vibratory signals with large changes in magnitude and phase angle the accuracy of the
simulated signal from the optimal tracker may decrease.
  4. For a more accurate evaluation of system mesh stiffness an optimal tracker for the complete
dynamic model of the system is needed.
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Figure 4.—Experimental spiral bevel gear test rig.
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Figure 5.—Damaged gear tooth and corresponding analysis. (a) Damaged gear
   tooth at 6.5 hr. (b) Time signal, WVD, and frequency spectrum of vibration
   signal at 6.5 hr.
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Figure 6.—Simulated gear tooth wear and corresponding gear stiffness. (a) Simulated
   gear tooth wear. L2:L1 = percent of engagement profile wear. (b) Gear stiffness from

   calculated simulated tooth wear.
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Figure 7.—Filtered and unfiltered experimental and tracker-simulated
   vibration signals for spiral bevel gear at 6.5 hr. (a) Unfiltered. (b) Filtered.
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Figure 8.—Tracker-evaluted mesh stiffness for spiral bevel gear at 6.5 hr.
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